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THi: MANIFOLD APPLICATIONS OF PASCAL'S TRIANGLE

1

INTRODUCTINN

b4

The purpose of this paper 1s to examine the uses of
Pascal's triangle and to show how 1t relates to many different

mathematics, The great apparent siwplicity of Pascal's

o]

triangle has prompted some people, Including Kewnler and others,

ize about the assthetic value of guch aspects of

Perhaps the bsst son for regarding mathematics as
an art is not =o muc at it affords an outlat for creative
sctivity as that 1t ides spiritual values, It puts man
‘n touch with the hi t aspiratlions and loftiest goals,
It offers intsllectu elight andjthe sxaltation of resolv
ing the mysteries of universe,”
Cortainly it is very iInterestling that such & wide range of an-
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Llatse Pascal (16233-1662) was one of the most brilliant
mathamaticisns of the seventecenth century until he gave up
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mathematice for mysticism. i child prodigy, he was »nly th
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Zhi Y:o1,% who lived it the time the Chinese Fapire was sprawl-
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ing ? vrope. (fany other thematical iceg, such as
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G 2 TRl rgcovered much later in the “'sgt,
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taken 1 at a &
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labsled X, Cimn “fosﬁ) can be divided into two
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1838,

Gun ot vons

onstltute the nth row of

ANALYSIS

r at a time without repetltions
Y\‘

(2= e

fact, the same

iz not & mers

me with r

be fs,r)

a direct result

distinguis

o

there are (s - 1) things taken

and therefope

(¢}

the number is f(s - 1, ).

orbinations that include X at least once, there

joto

hable combina

P

1's Triangle,

If any one of the s things

1ge is

tions

combinations of n thilngs

(2)

numbers as those found in Pascal'ls
coincidence, however, as the bl

of this.)

of s things

repetitions Is also found in Fascal's

since it is a funcition of two inde-~

arbitrarily:

subsets: .-the
3easf onee, and the

X at all

do not include X,

r at a time with repetitions,
For the number of

are (r - 1)

sther choices from s things (since repebitions are allowed),

soc the number 1s f(s,

- 1).

Therefore:

fl(s, r) = f(s = 1, r) + f(s, r = 1)

recursive definition because f{s, r) can be

of numbers of the form f(s

0) and

to one (f{s, 0} is the empty set).

alts Law,

Eguat

ion (4), and can be

£f{1, r), which
This is very

used as the

basis for Pascal's Triangle, if s is the nuamber of left die=-
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gonals starting at s = 1, and if r Is the number of right
diagonals starting at r = 0. Note that r 18 the same for

both trisngles. =l S ey
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By the geometry ~f fascal's Triangle it 1s easily

n = g + 1 = 1 (6)
Therefsrz, since (s, r) 1s identieal to (),
"2
1 t & -t
£ ¥ = ¢ I = - r - s\ (< L\’,,— ,
.L(S’ P/ \Y A ¥ 7 \["\_(;K l‘)\ \7)

tquation (7) is very useful in solving many types of problems,

such as

o

A

A store stocks s kinds of candy bars. How many distinguish-
able combinations are there of buying r candy bars?

How many possible resulbs are there of rolling r s-sided
dice, 1f the dice are not distinguishable?

How many ways are there of putting r 1dsentical bhalls into
g different cells?
o0

tne way of proving Equation (7) 1s by cowparing the last example

to Lo nunbesr of permutatlons of ths possible lincar arrange-

s

ments of (g - 1) bars and r stars (e.g., s/uws//x/vwn///m5)
This number is
fls, ) = (571 =1 (7)
Because 8 and r are not reversible (i.e¢., f(s, r) #
f{r, s}), so'e of the symmetry caused by Lquation (3) is

vroken, It follows from Equations (3) and (%) that:

f(s, r) =f(r + 1, 8 - 1) (8)
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If, in the third example, it is required that there be
at least one ball in each cell, then the number of combinations
would be:

f{s, r - s) = gt» (9)
It follows that the number of permutable partitions of a number
r is;

i(f‘t)—i(‘;t \WS)W: (r) 7= 27 | (10)

th um of the numbers in the (r - 1)th row (which are
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the coefficients of the {r - 1)th binomial expansion).
of course, the number of permutations of s things taken

t & time with repetitions is:

jre
o

P = sT _ (11)

11Y is more useful in probability theory than Equation

o~

Eqﬁatiom
(7}, but Tquation (7) 1s useful in a wide rangé 5 probléms that
might otherwise be very difficult. It is important to note that
Pagscal's Triangle was very useful in thse derivation 5fvKuation

{7}, but it was not necessary for its proof.

IV, CTHE" PROPERTIES OF PASCAL'S TRIANGLE

Since the sum of the numbers in any dilagonal is found

2 o5
in o oa

calts triangle by:

ﬂw[;\ WA
EA\r/ V-
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o n
numbe 's of the form (1) are consecutive integers, numbers of

f‘\.) ,'-3

the form ) are triangular numbers (if arranged like bowling

pins, 1t 1

n

easy to ses that it is the sum of consecutive inte-
. n <

gers ), and numbers of the form (3} are tetrahedral numbers (if

egquilateral triangles of cannon balls, with consecutive integers

for the number of balls tn a side, are stacked up, the result
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1s a tetrahedron). Pyramidal numbers (the sum of consecutive

squares, geometrically a square-based pyramid) can be found
by adding two consecutive tetrahedral numbers5 or by adding a
triangular number to twice the previous tetrahedral num.ber'.6

The sum of consecutive cubes is found to be the square of a tri-

angular number, Algebraically,

if(a = (V\; > (V\*1> + 9 <V\+\) M_Vlj_,%illl;tl)
and icg = C"; ’}2: W(Xfm\z

can e desiqned

4 three-dimensional versicn of Pascal’sg triangleAby

using the trinomlal expansion and arranging ths .coefficients

in a tetrahedrsn s that FPascal's triasngle is a special case.
This is useful in probability theory, but as far as I know its
properties have not been as fully investlgated as have been |
Pageal's triangle. The multinomial expansion7 is also important
in probability but it is impossible to construct the coefficients
geometrically in three-dimensional space. The following result -

ias just one of countless other uses of the binomial coefficients

O

£ which T haven't the space to put here.

A= 2 () (e

V., THE FIBONACCI SEQUENCE

Pascal's Triangle can be arranged as follows:

1

1 1

1 o 1

L3 31
1L 64 1

1 5 1010 5 1
1 ¢ 152015 6 1
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The numbers connected by lines are called the ascending
diagonals. If wu, is the sum of the terms in the nth ascend-
ing diagonal, then 1t follows from Equation (l) that:

U.n = Up.aiy + un_z

Since vy = u, = 1, this forms a recurrent sequence of the

A

gsecond order:

i, 1, 2, 3, 5, 8, 13, 21, 34, 55, €9, 1uk, 233, ...
This is k¥nown as the Flibonaccl Sequence, named after one of
the very few great methematiclians of the Middle ages, Fibonaccl,
alsgse known as Leonardo of Pilsa. In 1202 Filbonacci (a contraction
of filius Bonsacci, i.e., son of Bonaccl) wrote a very important

s

(8]

ck, Liber Abacl ("A book about the abacus™). On pages 123-

12 of the 1228 edition, Fibonacci esplains his famous rabbit
problem, the solution of which is the Fibonaccl sequence:

A pair of rabbits 1s placed in a walled enclosure to
£ind out how many offspring this pair will produce in the
course of a year if each palr of rabbits givez birth to a
new palir each month starting with the second month of its
i4fe., Since the first pair has offspring in the first
month, double the number, and in this month there are two
pairs, Of these, one palr, the first, glves birth in the
following month as well, so that in the second month there
syre three pairs, Of these, two palrs have offspring in
following month, so that in the third month two addi-
12l palrs of rabbits are born, and the total number of
£ rabbits in this month reaches five., Three of
1ve pairs have offspring that month, and the number
reaches eight in the fourth month. Five of these
oduce another five palrs, which, together with the
irs already In existence, make 13 pairs in the
nth. TFive of these 13 palrs have no offspring that
while the remaining eight pairs do give birth, so
in the sixth month there are 21 palrs. Adding to
he 13 pairs born in the seventh month, we have a
£ 3 pairs. Adding to these the 21 pairs born in
hth month, we have a total of 55 pairs. Adding to
the 34 paire born in the ninth month, we have a total
pairs. Adding to these the 55 pairs born in the
month, we have a tostal of 1hl} pairs. A4dding to these
9 pairs born in the eleventh month, we have a total of
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233 pairs,

is the number
ziven place at

Tairs:

first month:
scond menth:
th;rﬁ month:
oury
fifth month:
xth montn:

5 @ now

ing the

-L;.),

rd to the

and

The Fibonaccel Sequence

‘ F'inally, adding to
in the final month, we have a total of
of
the end of

i

weventh monbhs
eighth month:
inth month:
tenth montii:
@“avanth montn:
i L.LI th monthn:

ult; that is, we add the f“f

until we

A )

B

oy

these the 14l pairs born
277 palrs. This

pairs produced by the first pair in the

the year.

th month:

A Y

CoOVila MY
ol \.A;‘J:* N ] \)‘L.J:“ [ W) CD\)"L\)J [AW] | mad

o

I

o 0D

o

see how arrive
st number to the
nd to the third:
the fﬁnrth to the fifth; and
add the tenth and eleventh numbers,
thus obtain the total number of rabbilts

above table you can

one to twoj the seco
fourth;

has many unusueal properties,

such as the property that the partial sum of the first n
Fibona~cl numbers 1is {un+2 - 1}. This sequence cf‘partial sums
ls also the sequence of the sums of the terms in the ascending
diagonals of Pascalts Triangle 1f the first right diagonal (a
column in the last figure) 1s deleted. If the first two right
dilagonals are deleted, the sums of the terms in the ascending

Es
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tne sum of t

P
cmitied,

sum of the Fibonacel
relationship between

The reliation

i 2

are the par

he first ¥ terms of an ascendin

tial sums of the previous partisal sums.

g dliagonal are

=N

the remaining terms

8

s & ktn order partial

Sequence, Thus, there is a very close

Pascal's Triangle and the Filbonaccli Sequencs.,
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was implied by Kepler, who was familiar with the Fibonacci
sequence when he said:

For we will always have as 5 is to 8 so is 8 to 13,
practically, and as 8 is to 13, so 1s 13 to 21 almost,
I think that the seminal faculty is developed in a way
analogous to this proportion which perpetuates itself,
and 82 in the fliower 1s displayed a pentagonal standard,
so to speak. I let pass all other considerations which
might be adduced Ly the most delightful study to establish
this truth.9

In 1879, Catalan showed thatl0
2 - n"'g'p
5 - — o 1
un@l,p Yn4lep Un+l (-1) U
3 - x N o A 1 . 43 - = 11
and a few years later he gav%:jne following result:
e ) e 1
e —— Enll { n
u = 3
= n = D \21'}1)

Once again, we find that the Fibonaccl Sequence can be found
in terms of the numbers in Pascal's Triangle in a way entirely
different from the way previously mentioned. There are many
other genseral formulas relating different Fibonacci numbers,
ranging from Pythagorean triples to number theory, many of
whiclh sre most easgily proved by induction.

Professor Jekuthlel Ginsburg showed that the reciprocal

of the eleventh term of the Fibonacecl Sequence contains the

entire Tibonacel Sequence:12
1 1 _ 2, .
— = 5 ° 2. u, 101
11 e

Howsver, tiils 1s a colncldence to the extent that if we were
not on a system of base ten, a similar series would only con-
verge to the reciprocal of a Fibonaccl number 1f we used base

two, three, or eight.
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Most of the uses of Flbonacci numbers aren't very

practical but some of the following have besn used to calcu-

i,
late pi:¢3

arccot u,/u,.y = arccot u,_y/u, = (-1)7 arccot Usy,

arccot u2p + arccot ugp+2 = arccot uzp/u3

-1

arccot u + arcco = a
t 2p-1 tu rccot u,

2p+3 i1’

VI, THE GOLDEN SECTION
The ratio of two consecutive Filbonacci numbers,
/e & YT TR o > 3 'f'" 9 . 2
Ui/ B s approaches (1 + (5) as n increases. This number
1s so significant that it 1s called the golden ratlo and has

the symbol ¢ (phi). It can be defined as

AB AB _ AC
7 e —— 4 f' ————— [y
Z BC ° — BC AR’

for the line segment ABC. 3Solving the resulting quadratic
gives g = 1.561803398--- as its positive root. The ancient
Oreeks used the golden rectangle (one where phi i1s the ratio
between two adjacent sides) In their art and architecture (the
front of the Parthenon is a golden rectangle) because 1t was
thought to be the rectangle most pleasing to the eye. Kepler,
a "confirmed mystic,"lu called phi "the divine proportion”
because it occurs so frequently in mathematics. ZKXepler saild:
Geometry has two great treasures: one 1ls the thsorem
of Pythagoras; the other, the division of a line into
e$tr§§e and m§a? ratio. The first we may cpmpgpgﬁto a 18
measure of gold; the second we may name a precious Jewel,
Phri is 5o common in mathematics partially because it
1s the positive root of x2 - x - 1 = 0, and is equal to

2 cos /5, But it also occurs where you might not expect, such
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as in phyllotaxis, which describes the arrangement of leaves

on the stems of plants. The fractional rotation between two
successive leaves is thé ratio of alternate Fibonacci numbers
(consecutive If you go around the stem the long way). The

ratio is 1/2 for the basswood, Indian corn, and all the grasses;
1/3 for sedges; 2/5 for the apple, cherry, and most of our
common éhrubs; 3/8 for the common plantain; and 5/13 for the

comnon house lesk. Other ratios are found in the pine family

and in many small plants.16

H. E. Licks claimed that these same ratios are related
to astronomy in the following way:

The furthermost planet from fthe sun is Neptune, then
follow Uranus, Saturn, Jupiter, the Asterolds, and Mars,
then the Earth, Venus, and Mercury. Neptune makes 1its
revolution around the sun in about 60,000 days; Uranus in
30,000days or about 1/2 the time of Neptune, in like manner
“aturn's period is nearly 1/3 of that of Uranus, Jupiter's
period 2/5 that of Saturn, and so on until we come to the
Farth, following closely the same series as given above for
the leaves on a stem. Thus the mathematical expression of
the arrangement of the leaves of plants is approximately
the same as that of the periods of the exterior planets.
These arrangements of leaves ensure to plants a better
distributlon of the light and heat of the sun; the perilods
of the planets render them stable under the laws of gravi-
tation, Perhaps the botanist, had he known that these
fipgures apply both to leaves and planets, might have fore-
told -the discovery of the Asteroids or announced the exist-
ence of Neptune.-

Phi, like pi, occurs as the limit of certain seriles

which have no apparent relation to phi, such asid

b=/ ”'7'{‘;‘ .

¢

i

and

p N POR—— ‘”’T— S—
| & st
|+ :

1
Ll T

® e

The latter 1s a continued fraction, which is any fraction of
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that form., All rational numbers terminate when converted to a
continued fraction because of the Euclidean algorithm., Many
irrational numbers form simple patterns when converted to a
continued fraction. The convergents (rational approximations)
of phi are numbers of the form w,,q/u, .

To find up in terms of n, Binet showed that: 19

u, = ygn - (_},{)—n
5

This formula is useful in proving many properties of Fibonacci

numbers. To find u, in terms of v, 5

o

) ; e i, gt T
; = &y 1 . - n-1
My = Bugy + 59,7+ L(-1)

or, Lo the nearest integer,

Yn T 4 “p-1

In geometry, phl occurs frequently. It is closelj asso=-
ciated with the logarithmic spiral; the regular decagon, penta-
gon, and pentagram; and three of the five Platonic soli&s:go

The Icosahedron. The twelve vertices of a regular
icosahedron are divisible into three coplanar groups of
s s ofB hese lie at the corners of three golden rectangles
which are symmetrically situsted with respect to each other,
being mutually perpendicular, their one common point being
the centroid >f the 1lcosahedron.

The Cctahedron. An icosahedron can be inscribed in an
sectanedron so that each vertex of the former divides an
edge of the latter in the golden section.

The Dodecahedron. The ceniroids of the twelve penta-
gonal faces of a dodecahedron are dividible into three co-
planar groups of four. These gquadrads lie st the corners
of three mutually perpendicular, symmetrically placed
golden rectangles, their one common point being the centroid
of the dodecahedron.,

s

Ph

B

. is so common that mathematicians continue to find
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it in new places; it can even be found in the 3-4-5 triangle,

the Cross of Lorraine, and a sunflower!

VII. THE CALCULUS OF I"INITE DIFFERENCES
The numbers in Pascal's Triangle (sometimes called

figurate numbers) have another practical usse in the calculus
of fin ‘~ differences, the branch of mathematics "which deals
with the successive differences of the terms in a seguence of
numbors.’21 It is useful when a table is available for a
function of x, f{x), when the arguments X, are equl-spaced.
The zdvancing differences are defined as:

/N f(x

Jﬁkf(xi) = f(x ﬁ

ZﬁQf(xi) = Z& f(xi+l) - /N £xs) -

i
ol

it
i
‘_—
]
3
th
2%

ig defined as

ug = X - a
h

whare h.:tCXX, and a 1s any arbiltrary origin, then Newton's

)
" e 3
=
N
.
|

PRGVAEIC) X

u/’
Q(DB'\" W AH@ t %’” A (1)

i

This Is an extremely important formula, because 1t allows us bto
construct a formula for many seguences that f»1llow zimple laws.

FPor sxamrie, 1f we want to find a formula for the sum of the
first n squares, we need only calculate a few differsnces, set

h = 1 and 2 = 0 for convenlence, and we obtaln a formula for
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the sum In terms of n because the series terminates rapidly.

oy

In fact, if

o
w2

{(x) a polynomial in x, where the highsst degree

cause /§§” £x) =

Newton's formula can be used for interpolation if at some point

of x is n, then the serles terminates after (n + 1) terms be-
0

. If £(x) is not a polynomial in x, then

the differences are regardsed as negligible.
Newton's formula can also be used to approximate 1inte-
grals. 3ince f{x) can be found in terms of Yor Yis Tos eees Vi

and 4, h, and x, the result can be integrated between the limits

bl

th})., In this way the trapezoidal rule can be

X

]

-

Jerived for k = 1 and Simpson's rule for k = 2 :

k=1: A = zh(yg + 371)

k = 2:¢ A:_i'_x_(yo+ityl+y2)
3

ko= 3: A = & { Jo * 35’;1 + 3}72 + y:\\)

ko= ko A =2h (Tyg + 32y, + 12y, + 32y3 + 7y))
45

The approximation for the area, A, gets progressively more
accurate as g increases and if f(x) is a polynomial in x whers
the highest degree of x 1s less than or egual to k then the

area 1s exact and yields the same result as integration . Of
course, for any set of ordinates yg,, Yis J2seees Fis the formuls
can be repeated if 1 1s a multiple of k. This produces the
trapeznldal rule and Simpson's rule in their usual form as well
as more accurate formulas for the area under a curve if k has

a largsr value, e.g.:

4= 3 hlyg * 3y, + 3yp * 293 + 3y * 3yg 4 ocee 4 ¥3)
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It should be noted that in Newtont's formula u need not be an
integer since (?) can be defined as

(Y = u{u = 1\( -~ 2)ere(u - r + 1)
b 2" 3eeeer

In some old books, the notation ( ) is sometimes used for (?).
Y

This draws closer the similarity betwesn Newton's formula and

the Maclaurin series,

2
£(u) = £(0) + v £1(0) + = £7(0) + +-- (2)
More generally,
5 224
2x) = £a) + (5) A @ -\—< J 1 §@F 3
and w0y L (k=) g wtw e
£(x) = £la) + &5 §10) + P 4@ 4 (4)

In order to generalize the two formulas, I will define

the operation Zﬂ% such that

[Ehﬁ(ﬁy:[lh%QQ'z
2500 = A, (250 500)

where h is allowed to have any real value. This oparation is

n

" . n Yron ey
a generalized derivative smncetfﬁkf(x) = f(n/(x; if h = 0., If

s not ecual to zero,

jedo

The Taylor series (the generallizsd Maclaurin series) i
v ! : (X = a)Tr .
possible because the derivatlves of 2 . form a simple

rl
sequence and are all equal to zero at X = a except for one which

one, A similar reasoning holds for Sewton's formula

He 0
§

. . Ny
shmcf§§

to construct a gensral serles using [ﬁh, it is necessary to find

(an , Which follows from Pascalis Law. In order
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a function of X, &, h, and r with a similar property as men-

tioned before with respect UDLS, The only one is
(xA&> Lxcugx~0-h\/x«&-liJtmLLiJ::é;jihiﬁQ)
' v \A
% s e ‘X*C\‘ - += o ) ~ . ;
>ince [*\—‘h ( v )\“'" (u‘» n\\ / W L\(Uy\ (39,1-16 vali TS {\)QSCCJ /3 L GW,

¢

Therefore it follows that
—{, ' i X —& > p e
(o) = o) +(59, AFE@ + (R LT @+ e (g

Note that Newtonts formula is a special case of this where a = 0

and h = 1; and the Taylor series is & special case where h = 0.
Thus I have succeeded in unifying the two formulas,

"X
y repeated integration by parts of i f{t)dt, we can

Ja

I 0 dt = (=R 0 - S ey O\ — v n o

}

(o) 4= S _W_B ( R ey,
)a % (ﬁjgﬁ!\{ & 24.(\11 i) ((( ) A+ (') ;’ T\\\)i 3 (U CH T
It follows from this that

N ,(. ) 2 4 i g - 1
Py = r(a) + L0 - L) 5P 1 -

Cifferentiating both sides of series (&) produces a telescoplic
series whilch proves the formuls since it is true for sx= a,
This formula, however, 1s not nearly as useful as the Taylor
series bscause it involves functions which are not necessarily
polynomials. But 1t can be used to derive ths approprlate

Taylor series for a number of functions. If the

&
]
£
o
oo
o
[ 8
$]
e
-
o
®
=
jacd
pa

is usad, series (7) can te used for an exact integral for 1n x,
arctan x, and many other functions. Otherwise, seriecs (6) can
he used to approximate integrals with two advantag@s over for-
mulas like Simpson's rule: no commitment to the number of terms

is neceszary and the error 1Is esasily esstimated



-
;=

7=

This series can also bse generalized to include the
theory of finite differences but in order to do this it 1s
necessary to define a backward difference operation‘<ZF such
that ? B A
AN [P . . (7\): (:‘ _,\_;

V{0 = 40 = Vim 25
and
v . - ;

=, (T 00)
where, once again, h can have any real value including zero,
which would provide an alternstive definition of the derivative,

s 52 'Y
The backward difference of {Xr“}h is fairly simple:

T 7 <‘<~-a> _ (x=a=nh)
N V- /h

but is of no apparsnt use Inconstructing a series. Curiously,
if h =1 and (x -~ a) 1s an integer, successive forwerd differ-
ences follow a right diagonal and successive backward differ-
ences follow a left dilagonal in Psscal’s Triangle. I offer

without proof, as a generalization of series (8)
3

£x) = £(a) + (T W40 - N V{0 (9

where series (8) is a speclal case where h = 0, I could not use
[§§1f(x) in Tquation (9) because the rule for finding the differ-
ence of a product is different from the rule for & derivative of
a product if h # O:

AR O N W ARVE SV AWTRE S AN AW

VAU EY/AVAE R AVATENN A VAIRVAY

dfuv) = u dv + v du
The nctation is awkward, but it conforms to the starndard math-
ematical notation if h is omitted 1n subscripts when equal to one.

I have succeeded in unifying the theories »f infinitesimal

calculus and the calculus of finlte differences to a large extent,
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as they should Dbe.

VIII. CONCLUSION

In this paper, I discussed some of the many applications
of Pascal's Triangle, and how these applications branch sut into
various flelds of mathematica. I have shown how a simple triangle
can havé sipnificant effects on many practical and interesting
theories in mathematics, such as the binomial theorem, combina-
torial analysis, Fibonacci numbers, and the calculus of finite
differsnces, It is imporitant to reallze that much of mathematics

depends con the ability to break a‘complicated jdea down to a

»

simple law,
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