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The pur?ose of this paper is to examine the uses of

Pascal's triangle and to show how it relates to many different

field~ of mathematics. The great apparent simplicity of' Pascal's

triangle has prompted some people, including Kepler and others,
to p~11030phlze about the aesthetic value of such aspects of
mat.hemat Lcs , IVlOrris Kline stated:

Perhaps the best reason for regarding mathematics as
an art is not 20 much that it affords an outlet for cteative
act Lvi t y as that it pro vLdes spiritual values. It puts man
~n touch ~ith thG highest aspirations and loftiest goals;
It offers intellectual delight and, the exaltation of resolv-
tr1g t he mys t.e rLe s of t.he uni ve r se It-

plic~t1~r8 can result out of a single array of numbeps.

II. ~I3TC~Y ~? P1SCAL'S TRI1NGLE
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!~sc~l'~ trianGle is an ~rderly way ~f arranging the

CO e f' f J. c j. (~ n t s n+ y) where n is
a n~nnc~~tiv~ integer.
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since t he s e constitute the nth r-ow of Pascal's Triangle.

III •. CnI"lBIRfl.TORIil.L ANALYSIS

The number of distinguishable c ombi na tions of n things

taken r at a time without repetitions is:

(~) = Y'!(~~~-}l (2 )

The se a r-e , in f a c t , the same numbers as those found in Pascal's

Trianglei (It is not a mere coincidenco, however, as the bl~

nomial theorem follows as a direct result of this.)

The number of d l s t Lngu Ls hab Le c ombLna t Lons of' ~ things

taken r' at a time w i t.h repetitions is also found in Pascal's- --

fl'riangloj Let is be f(s,r) since it is a f'unc t Lon of two inde-

pendent va r LabLes , If anyone of the ~. things is arbitrarily

Labe Led X, then f(s~r) can be divided into two subsets: t he
n lA1'>'1612(' Ql C c;vltdr ~v\t:d--Wv, ') tt- (1.+ iII\d LlJe. X[\.{- !~.().:::'t- O.l ~ I ct H 0\. tt, e..
numbs!' of combinations that do not include X at all .•

For- the number of combinations that do not Lnc Lude X,

there are (s - 1) things taken ~ at a time with repetitions,

and the r-ef'or-e the number' is f(s - 1, r·). For the number- of

corno Lnat Lons that include X at least once, there are (r - 1)

~thBr ch~ices fr~m ~ things (since repetiti~ns are allowed),

so the number is f(s, r - 1). Therefore:

f(s, r) = f(s - 1, r) + f(s, r - 1)

This is a true recursive definition because f(s, r) can be

f::>und in terms of numbers of the form f(s, 0) and f(l, r), which

are bo t h equal to one (f(s, 0) is the empty set). This is very

similar to Pascal's Law, Equati:)n (4), and can be used as the

basis f' or Pascs L' s Tr:tangle, if ~ is the number -::.f left dLa>
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gonals starting at s = 1, and if r is the number of right
diagonals start ing at r = O. Note that r i~ the same for

By the geometry ~r Pascal's Triangle it is easily

p1:·OV6tl. that:

n ::::S + l' - 1

since f (s,r)

.n( ':. (,rn)IS, r)
_ (s + r - 1, _ ('S t- I.l- \) ~

- \ r J - "7"0~s-=-0\ (7)

solving many tjpes of problems,~q V.3. t i 0:r1 (7) is very useful in

such as:

A store stocks s kinds of candy bars~ How many dist:tnguish-
abI.e comb ina t Lojis are there of buy i.ng ,...caridv bars':'__ ~ _a.. I.UJ .•

How many possible results are there of rollina r a-sided
d ice , if the dice are not dis tlnguishable '? '-'

How many ways are there of putting! identical balls into
s different cells?

(ne Hay of pr-cv tng Eq ua.t ion (7) is by c orcpa r-ing the Las t example

ment.s ot' (8 ~ 1) bars an.t E. sta.rs (e s g; , ::'-/~:-.:(//::-/;:'"'.'<--:'///;:--:,")
This numbs l' is:

(7)
"' e and rare no i': ev 4t' (. >b8caus s _ r e r-s r oi.e 1..<:.;

fCr', 8))~ s o oe of the symmetry caused by Equat.Lo n (3) is

br~ken. It follows from Equati~ns (3) and (() that:

f(s, r) = f(r + 1, s - 1) (8)
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If I Ln the third example, it is required that there be

a t leas L one ball in each cell, then the number of combinations

would be:

f(s, r - s ) :: (~~:) (9)

It follo1tls that the number of permutable partitions of a number

r is:
i:(~~~)~:>:.(~-:-;)\X--S\S-\:= (\+ Ir-I ~ 2~-\

'S.:.:=. i ':j"'\_O

is the s urn of the numbe r-s in the (x' -.

(10)
This l)th row (which are
also the coefficients of the (r' - 1 )th b t.nomf a L expansion) .•

of course, the number of permutations of ~ things taken
r a.t a t';me with repetitions is:

(11)
Equation (11) is more useful in probability theory than Equition
(7), but Equation (7) is useful in a wide range of problems that

might otherwise be very difficult. It is important to note that
Pascal's Triangle was very useful in the derivation of Equation
(7), but it was not necessary for its proof.

IV •• eT'HE, PHOPEH'I'IES OF PASCAL f S TRIANGLE

;SI nee the s um of the numbers in any diagonal is found

nnumbe's of the f::>rm (1) are consecutive integers, numbers of
the form {~) are triangular numbers (if arranged like bowling

pins, it is easy to see that it is the sum of consecutive inte~
n'~er' s \ arid numbe r-s of' the form (3', are tetl"ahedr-a L numbers (ifo .. / J1 '-''' ••• - .., ~ •

equilateral triangles of cannon balls, with C:)DS8cutive integers
ror- t he number of balls to a s :I.de , are stacked up, the result
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is a tetI'ahedr~n). Pyramidal numbers (the sum of consecutive
squares, geometrically a square-based pyramid) can be found

by adding two consecutive tetrahedral numbers5 or by adding a
6triangular number to twice the previous tetrahedral number.

The sum of consecutive cubes is found to be the square of a tri-

A tb.ree-dimens i ona I ve r-s Lon of Pa sceLl s
CuH ~ Ja,i'j \'led.

tr~angle ;...by
using the trinomial expansion and arranging the coefficients
in a t0trahedron S~ that Pascal's triangle is a special case.
This is useful in probability theory, but as far as I know its
properties have not been as fully investigated as have been
Pascsl's triangle. The multinomial expansion? is also important
in p~obability but it is impossible to construct the coefficients
geometrically in three-dimensional space. The following result
1~; j~l:st ODe of countless other uses of the binomial coefficients
of whioh I haven't the space to put here~

FIBONACCI SEC!,UE~\fCE

Pascal's Triangle can be arranged as follows:
1

1 1

1 '2 1

1 3 3 1

1 4 6 4 1

i rJ 10 10 5 1.?

-r

6 15 20 15 61- 1
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The numbers connected by lines are called the ascending

diagonals_ If un is the sum of the terms in the nth ascend-

ing diagonal, then it follows from Equation (4) that:

+

Since u1 ::u~ = 1, this forms a recurrent sequence of thec:

second order:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, t9, 144, 233, ...
This is known as the Fibonacci Sequence, named after one of

thelToY'Y fevl great mathematicians of the Hiddle Ages, Fibonacci,

also known as Leonardo of Pisa. In 1202 Fibonacci (a contraction

of filius Bonacci, i.e., son of Bonacci) wrote a very important

book, Lib6.£ Abaci (IlA book about the abacus"). On pages 123-

124 of the 1228 edition, Fibonacci esplains his famous rabbit

problem, the solution of which is the Fibonacci sequence:

A pair of rabbits is placed in a walled enclosure to
find out how many offspring this pair will produce in the
course of a year if each pair of rabbits gives birth to a
new 'pair each month starting with the second month ·of its
life.e Since the first pair has offspring in the first
month, double the number, and in this month theI'e are two
pa Lrs , Of these, one pair, the first, gives bLrth in the
following month as well, so that in the second month there
aT'e three pairs. or these, tV/o pairs have offspring in
t he f'o LLow Lng month, so that in the thir'd month two addi-
ti'Jn8;l pairs of rabbits are born, and the total number of
pair's of rabbits In this month reaches five~ Three of
t he se five pairs have offspring that month] and the number'
of' pair-s reaches eight in the fourth morit.h, Five of these
pairs pr-oduce another' five pairs s wh l ch , together with the
'sight pairs already in existence 1 make 13 pairs in the
fiftb. month. Five of these 13 pairs have no offspring that
month, i.,rhile the remaining eight pairs do give birth, so
that in the sixth month there are 21 pairs. Adding to
these the 13 pairs born in the seventh month, we have a
t.ot a 1 of 3lt pa irs ~ Adding to the se the 21 pa Lr-s born in
t he eighth month, we have a total of 55 pa irs 8 Adding to
these the 34 pairs born in the ninth month, we have a total
of (;C) pairs * Adding to these the 55 pa Lr-s born Ln the
tenth month, we have a to t a I of 144 pa Lr s , Adding to these
the 39 pairs born in the eleventh month, we have a total of
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?33 pair-s. Finally, adding to these the 144 pairs born
jn the final month, we have a total of 377 pairs. This
ls the number of pairs produced by the f:trst pair in the
zlvGn place at the end. of the year-.

Pairs:
first month:
second month:
third mo nt h :
fourth month:
fifth month:
sixth month;

eighth month:
ninth month:
tenth month:
e Le ve nb h month:
t'Aolfth month:

1
2
3
5
8

13
21
34
,-'r'y:;
89

144
fj')'1'-..1..)
'').''''"''7
jll

~~y examining the above table you can see hO·,.T ~-ie arrive
.rt the resu::tt; that is, we add the fiY'st number to the
second, that is, one to two; the second to the third;
the thirc: to the fourth; the fOUT'th to the fifth; and
30 fGrth5 until we add the tenth and eleventh numbers,144 a.nd 233, and thus obtain the total number of rabbits
in quu3tion, 377.

The F ibonacc i Sequence has many unus ua L properties,

such as the property that the partial sum of the first !l

Pibon8~ci numbers is (u - 1),_\ n+2 This seque nce of partia.l sums

is also the sequence of the StL."11.:J of the terms in the ascending

::1iagonals of Pascal's Triangle if the first right diagonal (a

column in the lastfieure) is deleted. If the first tHO right

diagonals are deleted, the sums of the terms in the ascending

dLagonaLs are the partial sums of the previous partial sums ,

In gcn~r~l, if the first ~ terms of an ascending diagonal are

cm.it t ed , the sum of the remaining terms is a kthorder partial

Bum 0i' thu Fibonaeci Sequence. e. Thus, the r-e is a very close

The relation

relationship between Pascal's Triangle and the Fibonacci Sequence.

')
une.. - un -\•. - .•.. un+-l
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was liaplied by Kepler, who was familiar with the Fibonacci
sequence when he said:

For we will always have as 5 is to 8 so is 8 to 13,
practically, and as 8 is to 13, so is 13 to 21 almost.
I think that the seminal.faculty is developed in a way
analogous to this proportion which perpetuates itself,
and so in the flower is displayed a pentagonal standard,
so to speak. I let pass all other considerations which
might be adduced uy the most delightful study to establish
this truth,,9 .

In 1879, catalan showed thatlO

u un-tl-p n+l+p
(_1)n+2-p up

'1_12' ..- U
n

gave the f oLLowLn g r-e suIt: 11
t~i1::;E 51 (2~\-1)

and a later he

l¥)+ 5(~) + 52(~) + 53(~) +

Once again, we find that the Fibonacci Sequence can be' found

. .. .

in t or-ms of the numbers in Pascal! s 'I'rLang'Le in a Hay entirely
diff8:cent from the way previously mentioned. There are many
other' general formulas relating different Fibonacc i numbers,
!>ancing from Pythagorean triples to number theory, many of
which are most easily proved by induction.

Profe ssor Jekuthiel Ginsburg showed t ha t the roc iprocal
of the eleventh t.e r-m of the Fibonacci Sequence contains the

entire Fibonacci sequence:12

1 1.: =
ull 89 "'.L. 0- 1-1ui

H:.),WE: v'e 1"' , t n Ls is a c oLnc idence to the extent that if we were
no t 0'" a system of base ten, a s L'1lilars er-Le s would only con-1.

ve r-ge to the reciprocal of a Fibonacci number if we used base
tHO, t.hr-e e , or eight.
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East of the uses of Fibonacci numbers aren't very
practical but some of the following r~ve been used to calcu-

. 13late p~:
arccot unlun+l arccot Un_l/un = (-l)n arccot u2n

arc cot u + arccot u2p+2 = arc cot U2P/u32p-1

arccot u + arccot u2p+3 = arc cot u.., /u42p-l ~P+l '

VI. THE GOLDEN' SECTION

The ratio of two consecutive Fibonacci nurnber-s ,

un_H/c~n t approaches !(1 + IS) as n increase s , This number
13 SO significant tha. t it is called the golden r-atio and has
the symbol y) (phi)e It can be defined as

AB
Be , if AB ::: AC

BG AB ,

for the line segment ABC. Solving the resulting quadratic
gives p z: 1.61803398··· as its positive r-oot , The ancient

Greeks used the golden rectangle (one where phi is the ratio
between two adjacent sides) in their art and archttecture (the
front of the Parthenon is a golden rectangle) because it was
thought to be the r-ectangle most pleas Lng to the eye e Kepler,
a IIoonr Lrrned mystic, n14 called phi "the divine proport ion"
because it occurs so frequently in mathematics~ Kepler said:

Geometr'Y has two great treasures: one is the the or-em
of Pyt ha gor-as ; the other, the di vis ion of a line into
ext r-eme and mean r-a t Lo , The first we may compare to a Ie:'
measure of gold; the second we may name a precious jewel .• .>

Phi is so common in mathematics partially because it
is the positive root of x2 - x - 1 = 0, and is equal to
2 cos"~/5~ But it also occurs where you might not expect, such
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as in phyllotaxis, which describes the arrangement of leaves

on the stems of plants. The fractional rotation between two

successive leaves is the ratio of alternate Fibonacci numbers

(consecutive if you go around the stem the long way). The

ratio is 1/2 for the basswood, Indian corn, and all the grasses;

1/3 for sedge s; 2/5 for the apple, cherry, and mos t of our

common shrubs; 3/8 for the comItlonplantain; and 5/13 for the

COfa.::10n house leek. other ratios are found in the pine family

and in many small plants.16

H. E. Licks claimed that these same ratios are related

to as t r-o nomy in the followlng way:

The f'ur-tibe rmos t planet from the sun is Neptune, then
f::>1101,"] Ur-a nus , Saturn, Jupiter, the Asteroids, and Mars,
the n the Earth, Venus, and lVlercury. Neptune makes its
revolution around the sun in about 60,000 days; Uranus in
30,000days or about 1/2 the time of Neptune; in like manner
~:aturn's period is nearly 1/3 of that of Uranus, Jupiter' S
period 2/5 that of Saturn, and so on until we come to the
Earth, following closely the same series as given above for
the leaves on a s tem, Thus the mathematical expression of
the arrangement of the leaves of plants is approximately
the same as that of the periods of the ext.e r Lor- planets.
!rhese arrangements of leaves ensure to plants a better
d:lstribution of the light and heat of the sun; the periods
of the planets render them stable under the laws of gravi-
tat ion. Perhaps the botanist, had he known tha t these
flg'Ll.res apply both to leaves and planets, might have fore-
toLd the discove~:y of the Asteroids or announced the exist-
ence of Neptune.L7

Phi, like pi, occurs as the limit of certain series

whjch have no apparent relation to phi, such aslS

a nd
= 1 + ._----_._-_._---

\ -1-- I\+ __ 1_._
t+_I-

It •..
The latter is a continued fraction, which is any fraction of
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that form. All rational numbers terminate when converted to a
continued fraction because of the Euclidean algorithm. Nany
irrationa.l numbers form simple patterns when converted to a

continued fraction. The convergents (rational approximations)
of phi are numbers of the form un+l/un•

To find un in terms of £, Binet showed that:19

Un = pn _ (_p)-n
5

This formula is useful in proving many properties of Fibonacci
numb6rs~ To find un in terms of un_l '

:::: ·1.u2 n-1 +

or, to the nearest integer,
un = p5 u 1 8n-

In geometry, phi occurs frequently. It is closely asso-
cia te d Hi th the logarithmic spira.l; the regular decagon, penta-
gon, and pentagram; and three of the f1ve Platonic 8011d3:20

The Icosahedron. The twelve vertices of a regular
ieosahedron are divisible into three coplanar groups of
rour , These lie at the corners of three golden rectangles
which are symmetrically situated with respect to each other,
being mutually perpendicular, their one common point being
the centroid of the icosahedron.

The Octahedron. An icosahedron can be inscribed in an
octaFiedron so tha t each vertex of the f'or-me r- d1vi.des an
edge of the latter in the golden section.

The Dodecahedron. The centroids of the twelve penta-
gonal fa.ces of a doaecahe dron are divis LbLe into three co-
planar gr-oups of four. These quadrads lie at the corners
of three mutually perpendicular, symmetrically placed
golden rectangles, their one common point being the centroid
of the dodecahedron.

Phi is 80 common that mathematicians continue to find
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it in new places; it can even be f'ound in the 3-4-5 triangle,

the Cross of Lorraine, and a sunflower 1

VII. THE CALCULUS o.F FINITE DI?FI~RENCES

'I'he numbers in Pascal f s Triangle (sometimes called

figurate numbe r-s ) have another practical use in the calculus

of finIte differences, the branch of mathematics IIwhich deals

with the successive differences of the terms in a sequence of

numbers, ~12l It is useful when a table is available for a

f uno t Lon of x , f(x), whe n the arguments Xi are equi-spaced.

The a cvanc i..ng differences are defined as:

D f (xi)

l~f (xi)

~f(xi)

f(xi)

f(xi+l) - f(xl)
= ~-I f (xi+1) - [5.-'

=

=

If ul is defined as
u~ ::::X - a

,I.

h

whe r-e h := Ox, and a is any arbitrary origin, then New t.o n t s

formula. gives:
f(u) = t(~)L! f (0)

::: .5- ( 0') -+- Gt D~(0) +
()Jv-t)
.~ _\__ •• I

'2- '. (1)

This i.f~ an e x t r-eme Ly important formula, because tt e l.Low s us to

Por- e xampLe, if we want to fj.nd a formula for tiJ.e sum of the

first ~ squares, we need only calculate a few differences, set

h = 1 dnd a = 0 for convenience, and we obtain a formula for
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the sum in tel'rtls of n because the series terminates rapidly.

In f"u:.:t, if I'{x ) is a polynomial in ~, where the highest degree

of :::. is E!., t he n the series terminates after (n + 1) terms be-

cause c:-e- 1 f(x) == O. If f'{x ) is not a polynomial in~, then

New t.on t s formula can be used for interpolation if at some point

thB differences are regarded as negligible.

Newton's formula can also be used to approximate inte-

grals. Since f(x) can be found in terms of YO' YIJ Y2' ••• , Yk
and ~, h .• and ~, the r e suLf can be integrated between the limits

01" - - l' -'1 l >.\... ~::i. 1'....;.. \. '.:...-t In this way the trapezoidal rule can be

der Lved far k = 1 and Simpson's rule fork = 2 :

H:: ~- 1:

k -- 2:

1<:. ~- 3: A == 3h
8

( Yo + 3y, + 3y~. + y ).J.. L 3

11: ::: J..j.: A = ~~ (7YO + 32Yl + 12Y2 + 32Y3 + 7Y4)
4.'::>

The approximation for the area, A, gets progressively mor-e

accurate as k increases and if f(x) is a polynomIal in ~ where

the hl ghe s t degree of .! is less than or equal to k then the

area is exact and yieldS the same result as integration. Of

cour-s e , for any set of ord ina te s YO' Yl' Y2,.'.' Yi' the f'or-mu La

can be r-e pe a te d if i is a multiple of k , This pr-o duc e s the

trapezoidal rule and Simpson! s rule in. their usual form as Hell

as mor-e accurate formulas for the area under a cur-ve if k has

a larger value, e.g.:

A = ~ h(yo + 3Y1 + 3Y2 + 2Y3 + 3Y4 + 3Y5 + .•~& + Y3i)
l,
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It sho ul.d be noted that in Newton's formula u need not be an

integer sjnce (~) can be defined as

u = u(u - l)(u - 2)···(u - I' + 1)
(r) 1&2-3. '··r

In some old books, the notation u(r) is sometimes used for (~).
r!

This draws closer the s Lmf.Lar-Lt y between Newtonl s formula and

the Y:aclaur'in sepia s ,

u2
f(u) = f{O} + u f'(O) + 2 fl'(O) + •.•• (2 )

and

ner-ally,

f'{x ) ~- f(a) + \~ct)6 feet) -\- (~) c -~((~)+

f(x) - f(a) +(.~ J/(Cl) -\- (i:~2--5'((0-.) -t-."

(3 )

In order to generalize the two formulas, I Hill define

the operation ts. such that

and

Hhel"E:: h is allowed to have any real value. This op- r-a t Lon is

a generalized der-Lva t Lve since !~\.,f(x) == r(n)(x) if h :::::O. If

h is not equal to zero,
/\n \ i::t .C- (~!~h'~(t-j ::::y

The Taylor series (the generalized Naclaurin series) is

po s s LbLe 'because the derivatives of (x - aV form a simple
rl

sequence and are all equal to zero at x == a except for one which

is equal to one. A s im:i.1ar r-e a ao nLng holds for N(~v;ton' s formula.

s i.nc e ~ (~;) = (r~n) , whLcn follows from Pesca'l ' s La\1. In order

to cc ns t r-uc t a general series using D.h' it is necessary to find
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a function of !" !!" h, and £. with a similar property as men-
t Lone d before with respect toL1:n• The only one is

(x ~CI..\ = (,!...:-::Gt.\(t.- (·t-:J-')( x_.:::.~\_-::lW._· " ~ <.x - 0.. - \1' iA +_~~)
\ \[' )'" '(~ ~

- ',.. L\:' I y,- 0-) - (",- (\ \ I' . P , 'll L'" \",;:>lV\U2. -'i-.\\(. h- "--Vl}h/VJ~\lcJ\ (~E'J,\eV-l1,.I-L.€') \o.SC(\ S \JLV'J

Therefore it follows that
f(x) ::::f(a) +t7ct)h l~h1(()..) + ()(;(l)~E'",f({\..) -+ ,n ~ (5)

Note that Newt on t s formula is a spec LaL case of this where a ::; 0

and h :::::1; and the Ta~rlor series is a s pe cLaL case where 11 :::: O.

Thus I have succeeded in unifying the two formulas.
integration by parts of f

')(
f(t)dt, we can

J<1

derive the infinite series
( 6)

OJ':', with the remainder term"

It follows from this that
f (x) :: f (a) + ¥:f fer.') - (~ft111C~) +-~~~yf'(j)- ...(8 )

Differentiating both sides of series (8) produces a telescopic
:361'ieslvhlch proves the formula since it is true fol:'ax:::::: a.

This formula; however, is not nearly as useful as the Taylor

series because it involves functions which are not necessarily
polynomials. But it can be used to derive the appr~priate

Tayl:)r se r Lee for a number- of functions. If the remainder' term

is used, series (7) can be used for an exact integral for In x,

a r-c tan x , and many other runc t t ons , Othe r-w Lae , series (6) can

be used to approximate integrals with two advantages over for-
mu La s like Simpson's rule: no comm tt.me rrt to the numbe r- of terms
1s nece ssar y and the error is easily estimated.
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This series can also be generalized to include the
theory of' finite differences but in order to do this it is
necessary to define a backward difference operation ~'O such
that

I . • . . ~ (1-): t ('1- h)\X ~u')~\:Z t()() :=. \ \ WI h

\{\1+(1- '\ -:= 'C7. (\71"-1 -r i )~h J ) V''v\ V.....· \.Y- i

J
where, once age.in, h can ha ve any real value iriclu::.ling zero,

and

which would provide an alternative definition of the derivative.
The ba ckwa r-d differ'enee of (x;a)h is fair'ly S Duple:

but is of no a ppa r-ent use t.n C ODS truc t lng a s er Les, Curiously,
if h = 1 and (x - a) is an integer, successive forward differ~
ences follow a right diagonal and successive backward differ-
ences follow a left diagonal in Pascal's Triangle. I offer
without proof, as a generalization of series (8),

f(x) , . . (9)

whe re series (8) is a special case where h :::: O. I could not use
Dh f(x) in Equation (9) because the rule for finding the differ-
ence of a product is different from the rule for a derivative of
a product if h 10:

D~ (u,v) -=. (). 6",V -+ V 0-hlJ.. -+ hO\~GJ\ Q\S

-7,,, (~\\j)::: u.. \]" V + V "V: t/~ A· ~\ v", IJ. \J.., V

d(uv) = u dv + v du
The not.at i on is awkward, but it conforms to the standar-d ma th-
ematical notation if h is omitted in SUbscripts when equal to one.

I have succeeded in unifying the the8ries :)f infinitesimal
calculus and the calculus of fin~.te differences tela large extent,
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as they should be.

VIII. CONCLUSION
In this paper, I discussed some of the many applications

of Pascal's Triangle, and how these app11cati~ns branch Jut into
various fields of metihema t Lca , I have shown how a s i.mp Le triangle

can have significant effects on many practical and interesting
theories in mathematics, such as the binomial theorem, combina-
torial analysis, Fibonacci numbers, and the calculus of finite
differences. It is important to realize that much of ma t hema t Lcs
depe nds on the ability to break a complicated idea down to a
simple LnJ.
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FOOTNOTES

1. Huntley, p. 6.
2. Beckmann, p , \ \ '7

3. Hogben, p. 327.
4. Needham, p. 135.
S. Dudeney, p. 167.
6. Hogben, p. 327.
7. Feller, p. 38.

0. Am. Math. Monthly, October 1946, p. 236.
10. Ibid., p. 237.
11. Ibid.

12. Meyers p. 69.
13. Am. Ma th.?.Honthly, February 1940, p , Be.
14. Gardner, August 1959.
15. Huntley, p. 23.
16. Licks, p. 107.
17. Ibid., p. 108.
lB. Gardner, August 1959.
19~ Vor8byov, pp. 12-15.
20. Huntley, pp. 33-34.
21. Langer, p. 558.
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